友情链接 | 联系我们  
   
 
首页 | 监控设备 | 监控方案 | 监控案例 | 监控规标 | 监控知识 | 监控动态 |监控安装 | 监控维保 | 关于我们 | 联系我们
您当前的位置: 监控设备 >>> 监控维保问题
产品搜索:
 
[北方合力]  
首页监控概述
监控工程
监控维保
关于我们
联系我们
留言咨询
监控行业动态
监控系统常见问题
监控维保问题
 
浅析视频图像模糊处理法技术局限求突破
    

浅析视频图像模糊处理法技术局限求突破
近两年,雾霾问题严重影响初次那个安全与健康,给交通带来了不便,造成危险。而道路监控在雾霾天气的情况下对清晰度也有很大的影响。不过,DFG去雾算法技术却为这一问题提供了可行方案。不过除了雾霾的影响,摄像机本身的品质不同,拍出来的画面清晰度也不同,对于那些有需要而画面又不够清晰地图像,进行去雾处理,或者说是对图像的模糊处理法,也是目前需要的。

    安防模糊图像处理要求特殊

    计算机图像处理是将图像信号转换成数字信号并利用计算机对其进行处理。由于计算机的处理速度极快,且数字信号具有失真小、易保存、易传输、抗干扰能力强等特点,因而计算机图像处理的应用十分广泛,包括航空航天、遥测技术、医疗器械、工业自动化检测、安全识别、安防监控、娱乐媒体等各大领域。每一个应用领域都有其领域的特殊性要求,安防监控行业应用也有其固有的特殊性。

    对图像清晰度要求较高。在治安监控现场,公安机关往往需要通过监控录像来辨认嫌疑人、证据等。一般清晰度不高的视频都达不到这种要求。在交通监控现场,交警需要通过监控图像来识别车牌、违章行为、驾驶人等要求,模糊的图像在这种场合根本无法应用。

    不同的行业监控,对图像要求的差异性。比如医疗监控,对图像的色彩还原性要求比较高。智能交通监控,对摄像机夜间照度和抓拍速度要求比较高,要求能清晰辨别车牌。在无人值守监控,需要设备在无人看管的条件下能长期稳定的工作。

    户外安装,无人看守。在安防领域,大多情况设备需要安装在室外,设备需要经受常年的风吹日晒。要经历常年温度、湿度、盐度、辐射等自然条件的影响。电子设备自身的老化的速度会比其他领域要相对快一些。摄像机镜头、电子设备、传输线路等设施的老化会导致图像越来越模糊。

    海量视频路数的要求。在大型平安城市监控项目中,视频路数会达到上万路,甚至更多路。如此海量的视频路数,对网络带宽、存储设备都提出了很高的要求。所以在视频监控领域都期望视频编码的码率压缩比达到最高,从而降低对带宽和容量的要求。这就导致在视频编码环节产生更多的信息丢失,从而导致图像模糊。

    安防领域的这些特殊应用场所,都会导致图像清晰度的下降,反过来又对图像清晰度有很高的要求,势必会导致模糊图像处理技术在这里有广阔的应用前景。

    视频监控模糊图像的处理主要有三种:

    一、图像增强

    很多传统图像算法都可以减轻图像的模糊程度,比如图像滤波、几何变换、对比度拉伸、直方图均衡、空间域锐化、亮度均匀化、形态学、颜色处理等。就单个来讲,这些算法都比较成熟,相对简单。但是对于一个具体的模糊图像,往往需要上面的一种或者多种算法组合,配合不同的参数才能达到理想的效果。这些算法和参数的组合进一步发展成为具体的增强算法,比如“图像去雾”算法、“图像去噪”算法、“图像锐化”算法、“图像暗细节增强”算法等等。这些算法都不同程度提高了图像清晰度,很大程度改善了图像质量。

    综合使用形态学、图像滤波和颜色处理等算法可以实现图像去雾的算法,图1是一个去雾算法的实际使用效果,类似的图像增强算法还有很多,不再一一列举。

二、图像复原

    图像复原与图像增强技术一样,也是一种改善图像质量的技术。图像复原是根据图像退化的先验知识建立一个退化模型,然后以此模型为基础,采用各种逆退化处理方法逐步进行恢复,从而达到改善图像质量的目的。

    图像复原和图像增强是有区别的,两者的目的都是为了改善图像的质量。但图像增强不考虑图像是如何退化的,只有通过试探各种技术来增强图像的视觉效果,而图像复原就完全不同,需要知道图像退化过程的先验知识,据此找出一种相应的逆过程方法,从而得到复原的清晰图像。图像复原主要取决于对图像退化过程的先验知识所掌握的精确程度。

    对由于离焦、运动、大气湍流等原因引起的图像模糊,图像复原的方法效果较好,常用的算法包括维纳滤波算法、小波算法、基于训练的方法等。图3是使用维纳滤波解决运动模糊图像的例子,取得了很好的复原效果。在知道退化模型的情况下,相对图像增强来说,图像复原可以取得更好的效果。

    三、图像超分辨率重构

    现有的监控系统主要目标为宏观场景的监视,一个摄像机,覆盖一个很大的范围,导致画面中目标太小,人眼很难直接辨认。这类由于欠采样导致的模糊占很大比例,对于由欠采样导致的模糊需要使用超分辨率重构的方法。

    超分辨率复原是通过信号处理的方法,在提高图像的分辨率的同时改善采集图像质量。其核心思想是通过对成像系统截止频率之外的信号高频成分估计来提高图像的分辨率。超分辨率复原技术最初只对单幅图像进行处理,这种方法由于可利用的信息只有单幅图像,图像复原效果有着固有的局限。序列图像的超分辨率复原技术旨在采用信号处理方法通过对序列低分辨率退化图像的处理来获得一幅或者多幅高分辨率复原图像。由于序列图像复原可利用帧间的额外信息,比单幅复原效果更好,是当前的研究热点。

    模糊图像处理技术的局限性

    目前受硬件水平、传输带宽以及应用环境等因素影响,图像模糊问题还无法得到彻底解决。

    图像从采集到传输到存储显示的任何一个环节对于图像质量都很关键,任何一个步骤出问题都会影响图像质量,而且这种影响是不可逆的,所以说彻底解决图像模糊问题,需要一个全方位的技术更新。比如,在当前的数字图像技术的背景下,编码技术是影响图像质量的瓶颈之一,如果出现一种压缩比高、图像损失小的编码算法,当然会一定程度解决因为压缩导致的图像模糊问题,不过要实现这种算法,通常需要更高的运算代价,所以还需要硬件技术的更新来满足这样的算法。

    类似超分辨重构的模糊图像处理技术由于其算法的复杂性,目前的常规设备还很难做到实时处理高清图像,所以算法的效率还是目前的模糊图像处理的不足之一,这就需要从算法和硬件两方面入手,提高算法效率,同时也需要提升硬件性能。

    另外,目前各种针对模糊图像处理的算法,都是基于某种特定场景应用而产生的解决方法,各种算法存在的局部性和局限性,造成了算法应用的障碍。所以在未来的很多年,我们关于图像处理的算法和模型也有很长的路要走。

 
 
北方安控 | 行业动态 | 监控工程 | 友情链接
友情链接: 北方合力  百度  机票查询  北京地铁  电动车网  清洁能源  凤凰网  环球网  网易邮箱  京安协  中安协  监控安装  监控维保  监控视频 
版权所有:北京北方合力科技有限公司 18911280138 地址:北京市朝阳区安翔路2号 京ICP备05027980号